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DOUBLE-STEPPED ADAPTIVE CONTROL FOR HYBRID SYSTEMS WITH
UNKNOWN MARKOV JUMPS AND STOCHASTIC NOISES ∗
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and Ji-Feng Zhang
2

Abstract. This paper is concerned with the sampled-data based adaptive linear quadratic (LQ)
control of hybrid systems with both unmeasurable Markov jump processes and stochastic noises.
By the least matching error estimation algorithm, parameter estimates are presented. By a double-step
(DS) sampling approach and the certainty equivalence principle, a sampled-data based adaptive LQ
control is designed. The DS-approach is characterized by a comparatively large estimation step for
parameter estimation and a sufficient small control step for control updating. Under mild conditions,
the closed-loop system is shown to be stable. It is found that the key factor determining the perfor-
mance index is the estimation step rather than the control step. When the estimation step becomes
too small, the system performance will become worse. When the estimation step is fixed, the system
performance can indeed be improved by reducing the control step, but cannot reach the optimal value.
The index difference between the sampled-data based adaptive LQ control and the conventional LQ
optimal control is asymptotically bounded by a constant depending on the estimation step and the
priori information of the parameter set.
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1. Introduction

Systems with Markov jump parameters belong to the category of “hybrid systems”, which are emerging as
a convenient mathematical framework for the formulation of various design problems such as target tracking,
fault tolerant control and manufacturing processes, etc. [18]. Considering that the deterministic controllability
of each subsystem (Ai, Bi) does not ensure the existence of finite steady-state control for Markov jump system
(MJS), Ji and Chizeck introduced the stochastic controllability and stabilizability concepts, gave sufficient
and necessary conditions for continuous-time MJS, and derived the linear quadratic (LQ) optimal control
in [12,13]. When the system state is continuously measurable, Sworder [23] solved the quadratic optimal
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regulator problem of linear MJS with stochastic noises; Dufour and Betrand [6], Caines and Zhang [3], Huang
and Guo [10] considered stabilization controls of various stochastic jump systems; Xue and Guo [26] presented
sufficient and necessary conditions on adaptive stabilization for discrete-time linear MJS where a distinguishable
condition is appended to the general assumptions. When only output observations are available, Elliott and
Krishnamurthy [7,8] presented a class of finite-dimensional filters for continuous-time stochastic systems with
time-varying parameters, and an expectation maximization algorithm to get maximum likelihood estimates of
the unknown parameters involved.

We consider the sampled-data (SD) based adaptive LQ control of MJS with unknown jump parameters and
stochastic noise:

dxt = A(θt)xtdt + B(θt)utdt + C(θt)dWt, (1.1)
where xt ∈ R

n, ut ∈ R
m are system state and input, respectively; {Wt,FW

t } is normal Brownian motion defined
on probability space (Ω,F , P ) with FW

t = σ(Ws, s ≤ t); {θt,Fθ
t } is a stationary Markov process taking values

on a finite set S = {1, . . . , N}, where Fθ
t = σ(θs, s ≤ t) with transition probability matrix [25]

P (τ) = [Pij(τ)] = [P (θt+τ = j | θt = i)] = eΛτ , τ ≥ 0. (1.2)

Here Λ = (λij), λij ≥ 0, j �= i, and

λii = −
N∑

j=1,j �=i

λij . (1.3)

For simplicity of expression, here and hereafter we suppose the initial time t0 = 0, initial state x0 and initial
parameter θ0 are constants; for each matrix F (θt) depending only on θt, we denote F (θt) as Fi when θt = i,

that is, Fi
�
= F (θt)|θt = i. For example, denote A(θt)|θt = i as Ai, and B(θt)|θt = i as Bi.

In the following study of the SD-based adaptive LQ control, we have two purposes: one is to design an
SD-based adaptive control to stabilize the system (1.1); and the other is to study the impact of sample size on
the following quadratic performance index:

J(u) = lim sup
T→∞

1
T

E

{∫ T

0

(xT
t Q(θt)xt + uT

t R(θt)ut)dt | x0, θ0

}
, (1.4)

where Ri > 0, Qi ≥ 0.
The idea of using digital computers as components in control systems emerged around 1950 and there was

substantial development of digital computer technology in 1960s. Practically, most control systems developed
today are based on computer control (SD-based control) [1]. Since 1960s, many significant results have been ob-
tained on SD-based control, for instance, robust SD-based adaptive control [19,28], robust SD-based constrained
control [9], SD-based adaptive tracking control [15,21,29], SD-based optimal control and Lp stabilization con-
trol [14], robust SD-based stabilization analysis [20], and so on. For SD-based control design, the choice of
sample step is always the primary task, since improper sample step may destroy the controllability and stability
of the sampled system. Ilchmann and Townley specially discussed the methods of choosing sample step in [11].
For MJS with known parameters and stochastic noises, Yao and Zhang found that small sample step always
favored the LQ performance [27]. For MJS with unknown parameters which is free of noises, Tan et al. pointed
out in [24] that the following SD-based adaptive LQ control

ut = −L(θ̂kh)xkh, t ∈ [kh, (k + 1)h), (1.5)

θ̂kh = argmin
i∈S

‖xkh − e(Ai−BiL(θ̂(k−1)h))hx(k−1)h‖, (1.6)

approached to the conventional control in terms of system performance as the sample step went to zero. In
other words, the smaller the sample step is, the closer the LQ performance index under the SD-based control is
to the true optimal value.
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However, the systems discussed in this paper is much more intricate than the cases mentioned above, since
the parameters not only obey with Markov jump process but are also unknown, besides, the system is with
stochastic noises. By (1.2), when sample size is sufficiently small, the transition probability of the system
jumping from subsystem [Ai, Bi] to another subsystem [Aj , Bj] is approximately λijh. Hence, for linear MJS,
the changes of the norm of state x caused by different subsystems while jumping from the same initial state
during same period, is linear with the sample size h. On the other hand, the standard difference of sequence
Wkh derived from sampling the Brownian motion is linear with h

1
2 . As a consequence, when Brownian motion

and unknown jumps co-exist in the systems, if the sample size is much more smaller than 1, then the state
norm difference induced by the system noise will much greater than that induced by the jumps, that is, the
information used to estimate the jump parameters will be spoiled by the noise. Consequently, small sample size
is not always favorable to the parameter estimation, and hence, to the performance of the SD-based adaptive
control. In this case, the SD-based adaptive control is no longer asymptotically optimal as the sample size goes
to zero, and reducing sample size is no longer the best strategy to improve system performance.

Based on the above analysis, considering the coupled influence of Markov jumps and Brownian motion on
the estimation of system state, in order to minimize the influence of Brownian motion and optimize the LQ
performance index, we introduce a double-step (DS) approach to design SD-based adaptive control. Precisely,
we use two different steps to construct parameter estimation and feedback control, respectively. One step is
used to estimate system parameters, denoted by h∗, called estimation step; the other is to design SD-based
control, denoted by h, called control step. It is found that to get a good performance index, it is better to
choose a comparatively large step for parameter estimation, and a sufficiently small step for control updating.
Under mild conditions, the stability of the closed-loop system is proved. It is pointed out that the estimation
step is the key to determining the performance index. When the estimation step is fixed, the performance index
can indeed be improved by reducing the control step, but cannot reach the optimal value. The index difference
between the SD-based adaptive LQ control and the conventional LQ optimal control is asymptotically bounded
by a constant depending on the estimation step and the priori information of the parameter set.

The rest of this paper is organized as following. In Section 2 we design the SD-based adaptive control.
In Section 3 we give our main result Theorem 3.1 and analyze how the estimation step and the control step
influence the system LQ performance index. In Section 4 we give some preliminary lemmas and the proof of
Theorem 3.1. In Section 5 we illustrate our result by a simulation example. A brief conclusion of this paper is
given in Section 6.

2. Design of the SD-based adaptive control

In this paper we only discuss the following case where: (i) for each i ∈ S, Ai, Bi are known but θt is
unknown; (ii) the system is with stochastic noise; and (iii) only the sampled information of the system state xkh

are available. So, in this paper, we have new information coming in only at the sample time instant, and have
only the sampled state information rather than the complete state information available for estimating the jump
process θt and designing the adaptive control law.

By the condition on the jump parameter, almost all sample paths θt are constant except for a finite number
of simple jumps in any given finite time interval. So, we can define the paths of xt in an obvious way by
joining solutions arcs of (1.1) at jump points of θ. The xt sample paths so determined are then continuous with
probability one [25].

Consider the following MJS which is free of stochastic noise

dxt = A(θt)xtdt + B(θt)utdt, (2.1)

where {θt, t ≥ 0} is a stationary Markov jump process with transition probability matrix (1.2)–(1.3).
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Definition 2.1 ([12]). We say that the systems (2.1), (1.2)–(1.3), or simply [A(θt), B(θt)], is stochastically
stabilizable, if for all finite x0 ∈ R

n and θ0 ∈ S, there exists a linear feedback control law:

ut = −L(θt)xt

with L(θt) being constant for each value of θ0 ∈ S, and ‖L(θt)‖ < ∞ such that for a symmetric positive definite
matrix Π,

E

{∫ ∞

0

xT
t (x0, θ0, u)xt(x0, θ0, u)dt | x0, θ0

}
≤ xT

0 Πx0.

According to [12], if ∀i ∈ S, [Ai, Q
1
2
i ] is observable, then a necessary and sufficient condition for [A(θt), B(θt)]

to be stochastically stabilizable is that for any positive definite matrix Ri and non-negative definite matrix Qi,
the coupled algebra Riccati equations

AT
i Mi + MiAi − MiBiR

−1
i BT

i Mi +
N∑

j=1

λijMj + Qi = 0 (2.2)

have a unique symmetric positive definite solution set {Mi, i ∈ S}.
Remark 2.1. As pointed out in [27], when parameters θt of system (1.1) are known, the optimal and suboptimal
values of the LQ performance index (1.4) respectively obtained under complete-state-information-based control
and SD-based control are

J(u∗) = lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds,

and

lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds + O(h),

where h is the sample step and M(θs) are the unique symmetric positive definite solutions of the coupled algebra
Riccati equations (2.2).

In this paper we study the LQ performance problem of system (1.1) when the jump parameter θt are unknown
and only the sampled state information can be employed for designing the adaptive control.

We apply the following Least Matching Error Estimation (LMEE) algorithm to estimate the unknown pa-
rameter θt at time kh∗ for each positive integer k:

θ̂kh∗ = argmin
i∈S

‖xkh∗ − e(Ai−BiL(θ̂(k−1)h∗ ))h∗
x(k−1)h∗‖, (2.3)

where h∗ is the estimation step. The SD-based adaptive control law is designed as:

ut = −L(θ̂kh∗)xkh∗+lh, t ∈ [kh∗ + lh, kh∗ + (l + 1)h), 0 ≤ l ≤ h∗

h
− 1, (2.4)

where Li = R−1
i BT

i Mi, and {Mi, i ∈ S} is the unique symmetric positive definite solution set of the coupled
algebra Riccati equations (2.2); h is the sample step, also the control step, satisfying N∗ = h∗

h ∈ N. In other
words, at the beginning we calculate the estimate θ̂kh∗ of θkh∗ using both the sampled data x(k−1)h∗ , xkh∗ ,
and the estimate θ̂(k−1)h∗ of θ(k−1)h∗ ; then we design the SD-based control by using the estimate θ̂kh∗ and the
sampled data xkh∗+lh on time interval [kh∗, (k + 1)h∗). To maintain the advantage of small control step as in
conventional cases, meanwhile to reduce the impact of system noise on parameter estimation, we propose to
choose small control step and comparatively large estimation step. It is proved in the following section that the
DS-approach can greatly improve the performance index.
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We propose: firstly based on LMEE updating by estimation step, to estimate the unknown parameters on
line; then by certainly equivalent principle, to design the SD-based adaptive control whose feedback matrix
updating by control step; finally to analyze the stability and optimality of the closed-loop system.

3. Performance of the closed-loop system

We need the following assumptions:

Assumption 3.1. For any i ∈ S, [Ai, Q
1
2
i ] is observable; [A(θt), B(θt)] is stochastically stabilizable.

Assumption 3.2. Markov process {θt, t ≥ 0} and Brownian motion {Wt, t ≥ 0} are independent.

Remark 3.1. Assumptions 3.1 and 3.2 are the primary conditions of MJS when LQ optimal control problem
is studied. By Assumption 3.1, the coupled algebra Riccati equations (2.2) has a unique symmetric positive
definite solution set. Based on this solution set, one can design a linear feedback control law for the system (2.1)
to minimize the LQ performance index (1.4).

Theorem 3.1. For MJS (1.1), denote

Dijk(h∗) = e(Ai−BiLj)h
∗ − e(Ak−BkLj)h

∗
, i, j, k ∈ S.

Under Assumptions 3.1 and 3.2, if the estimation step h∗ and the control step h satisfy

detDijk(h∗) �= 0, ∀i �= k, (3.1)

h∗ ≤ min

{
1,

√
2 − 1

2c1ec1

}
, 5c2h

∗(2λ + λ1h
∗) +

c2γ0

1 − γ0
<

1
2
, (3.2)

h ≤ min

{
h∗,

9 − 4
√

5
2c1ec1

}
, ec1h + 2c1he2c1h ≤ 1 +

min
i�=k

‖Dijk(h∗)‖
8c2

1h
∗2e2c1h∗ , (3.3)

then with the SD-based adaptive control (2.4), the following results are true:

(1) the closed-loop system is stable in the sense of

lim sup
t→∞

1
t
E

∫ t

0

(‖xs‖2 + ‖us‖2)ds < ∞;

(2) the LQ performance index satisfies

lim sup
t→∞

1
t
E

∫ t

0

(xT
s Q(θs)xs + uT

s R(θs)us)ds≤ lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds+17γ1c3

(
2
γ2

+1
)2

h∗

+
340λγ1c2c3( 2

γ2
+ 1)2h∗2

1 − 10c2h∗(2λ + λ1h∗) − 2c2γ0
1−γ0

+ O(h∗) + O(h
1
2 ), (3.4)
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where

λ = (N − 1)(e‖Λ‖ − 1), λ1 = e‖Λ‖ − 1 − ‖Λ‖, (3.5)

c1 = max
{

max
i∈S

‖Ai‖, max
i,j∈S

‖BiLj‖
}

, c2 = max
i,j∈S

‖MiBiR
−1
i BT

j Kj‖, (3.6)

c3 = max
i,j∈S

‖(Li − Lj)T Ri(Li − Lj)‖, (3.7)

γ0 = 2c1h
∗ec1h∗

, γ1 =
1
h

E

∫ h

0

tr(CT
i eAT

i seAisCi)ds, (3.8)

γ2 = min
i,j,k∈S

{
σmin

(
e(Ak−BkLj)h

∗
+ e(Ai−BiLj)h

∗ − 2(eAih −
∫ h

0

eAi(h−τ)dτBiLj)N∗
)}

, (3.9)

and {Ki, i ∈ S} is the unique symmetric positive definite solution set of the following algebra Riccati equations

(Ai − BiLi)T Ki + Ki(Ai − BiLi) +
∑

j

λi,jKj = −I.

Here σmin(A) denotes the minimal singular value of matrix A.

Remark 3.2. Because θt is unknown, although we know that for any given time instant, the MJS’s true
dynamic is determined uniquely by one of those known subsystems, we have no idea about which is the exact
one. To get a good controller, we should have the ability to distinguish the subsystem that determines the
MJS’s dynamic from other subsystems. Condition (3.1) is such one called distinguishable condition of the MJS,
which ensures that each subsystem is distinguishable from the others.

Remark 3.3. In the case where condition (3.1) does not hold, namely, for any h∗, there exists a triple (i, j, k)
such that detDijk(h∗) = 0, if xkh∗ lies in the zero solution space of the equations

Dijk(h∗)x = 0,

then algorithm (2.3) has more than one solution, at least including i and k. Hence, to ensure the uniqueness of
the solution of our adaptive algorithm, we need the distinguishable condition.

For one-dimension system, condition (3.1) is equivalent to distinguishable condition [26]

(Ai − Ak) − (Bi − Bk)Lj �= 0.

For systems with a higher dimension, since

lim
h∗→0

Dijk(h∗)
h∗ = (Ai − Ak) − (Bi − Bk)Lj ,

then for any MJS satisfying

det((Ai − Ak) − (Bi − Bk)Lj) �= 0,

there must exist a small h0, such that for any h∗ ∈ (0, h0], condition (3.1) holds.
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As an example, let us explore a two-dimension MJS (1.1)–(1.2) with N = 2 and

A1 =
[

0 1
0 0

]
, B1 =

[
0
1

]
, A2 =

[
0 0
1 0

]
, B2 =

[
1
0

]
, Λ =

[−1 1
1 −1

]
,

C1 = C2 = Q1 = Q2 = R1 = R2 = I. Then, the gain matrices of feedback control are:

L1 =
[
1 1.73205

]
, L2 =

[
1.73205 1

]
.

By simple calculation, it can be seen that

detD112(h∗) = detD211(h∗) �= 0, ∀ h∗ ≤ 2.3;
detD122(h∗) = detD221(h∗) �= 0, ∀ h∗ ≤ 2.3.

Remark 3.4. If we only pursue the stability of closed-loop system without chasing better performance, then
we can merely employ the one-step approach to estimate the system parameters and update the control law
synchronously. In this case, conditions (3.2)–(3.3) can be simplified as

h ≤ min{1, h0}, c2γ0

1 − γ0
+ 8c2(2λ + λ1h)h

(1 + γ0)2

(1 − γ0)2
<

1
2
·

When calculating the LQ performance index and analyzing its upper bound, in order to simplify the calcu-
lation and get a smaller upper bound, we introduce condition (3.2) and (3.3) for selecting estimation step and
control step.

As for condition (3.2), the first inequality is deduced to simplify the proof of Lemma 4.4 given below, which
is a sufficient condition. Hence, in some circumstances, h∗ may be larger than that given by (3.2). By the first
inequality of (3.2) and the definition of γ0, we have 2c1h

∗ec1h∗
< 2c1ec1h∗ <

√
2 − 1. As a result,

c2γ0

1 − γ0
≤ (2 +

√
2)c1c2ec1h∗.

According to the solution of quadratic inequality

5c2h
∗(2λ + λ1h

∗) + (2 +
√

2)c1c2ec1h∗ <
1
2
,

we know that for any

h∗ ∈
(

0,
1

2((2 +
√

2)c1c2ec1 + 10λc2) +
√

10λ1c2

)
,

the second inequality in (3.2) holds.
As for condition (3.3), by the DS-approach we require h ≤ h∗. Meanwhile, we need h ≤ 9−4

√
5

2c1ec1 so as to
simplify the calculation (see the proof of Thm. 3.1 in Sect. 4.2). In regard to the second inequality in (3.3), by
condition (3.2), h∗ ≤

√
2−1

2c1ec1 , which together with inequality ex < 1 + 2x, ∀ x ∈ (0, 1], gives

ec1h < 1 + 2c1h, e2c1h < 1 + 4c1h.

Hence, the range of control step h can be solved through the following inequality

2c1h
2 + h ≤ mini�=k ‖Dijk(h∗)‖

32c3
1h

∗2e2c1h∗ ,

which is a key point in the proof of Lemma 4.3 of the next section.
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Remark 3.5. According to Lemma 4.2 given below, parameters λ and λ1 represent the transition probability
of system parameter θt. Precisely, they denote the probability upper bound of θt jumping from parameter i to
another parameter j on an interval with length h∗. By (3.2), when the transition probability of θt is sufficiently
small (that is, λ and λ1 are sufficiently small), the range of h∗ may be greater than that given by (3.2).

4. Proof of Theorem 3.1

4.1. Basic lemmas

In order to prove Theorem 3.1 we need the following lemmas. Lemma 4.1 comes from [24] and is listed here
just for self-containedness. The proofs of Lemma 4.2–4.4 are put into Appendix A.

Lemma 4.1 ([24]). Suppose θt is a stationary Markov process taking values in a finite state S = {1, . . . , N}
with transition probability given by (1.2) and (1.3). If functions f(θt) : R → R and g(θt) : R → R

n×n are both
measurable with respect to σ{θs, s ≤ t}, then when s − s0 ≤ 1, we have

E

[
‖g(θs) − g(θs0)‖

∫ s

s0

f(θμ)dμ | θs0 = i0

]
≤ max

j �=i0
‖g(j) − g(i0)‖max

l∈S
f(l)λ(s − s0)2, (4.1)

where λ is given by (3.5).

Remark 4.1. Lemma 4.1 can be explained roughly in this way. In the case where θt has no jump on interval
[s0, s], the left hand side of (4.1) is obviously equal to 0. In the case where θt jumps with small probability on
interval [s0, s], the left hand side of (4.1) is also small.

Lemma 4.2. Suppose {θt,Fθ
t } is a Markov process defined on probability space (Ω,F , P ) taking values in a

finite set S = {1, . . . , N} with transition probability given by (1.2) and (1.3), where Fθ
t = σ(θs, s ≤ t). If

function f(θt) : R → R and g(θt) : R → R
n×n are measurable with respect to Fθ

t , then when h ≤ 1, we have

E

[
‖g(θs′)−g(θ̂s0)‖

∫ s

s′
f(θμ)dμIGs0−h

| θs0−h = i0

]
≤(λ+λ1h)h(s−s′) max

i,j∈S
‖g(i)−g(j)‖max

k∈S
f(k), ∀s′ ∈ (s0, s),

where i0, k ∈ S; λ and λ1 are described by (3.5), and

Gs0−h = {ω : ω ∈ Ω, θt(ω) jumps in (s0 − h, s0)}.

Remark 4.2. Lemmas 4.1 and 4.2 both display the expectation estimate of stochastic functions with respect
to Markov process, but Lemma 4.2 is more precise. In Lemma 4.1, when θs0 = i0, θs = i0, because of term
‖g(θs) − g(θs0)‖, the left hand is obviously equal to 0. However, Lemma 4.2 describes a different case, which
needs us to estimate the expectation on Gs0−h, namely, θt jumps at least once in the time interval [s0 − h, s0].
Intuitively, this probability is small.

Lemma 4.3. For the system (1.1)–(1.2) with Assumptions 3.1 and 3.2, if the estimation step h∗ and the control
step h satisfy (3.1)–(3.3), then γ2 defined by (3.9) is positive.

Remark 4.3. By condition (3.3), h ≤ 9−4
√

5
2c1ec1 ,

1
1 − d1

≤ 1.06, ln
1

1 − d1
< 0.06. Thus, the second inequality in

condition (3.3) ensures that

ec1h + 2c1he2c1h

(
1
2

+ ln
1

1 − d1

)
< 1 +

‖Dkij(h∗)‖
8c2

1h
∗2e2c1h∗ , ∀i �= k.

So, by (A.10) one can get ‖2D−1
kij(h

∗)
∫ 1

0
e(1−t)(Ai−BiLj)h

∗
ΔijF

tN∗
ij dt‖ < 1.
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Lemma 4.4. Under the conditions of Theorem 3.1, for any given integers k = 0, 1, . . . , l = 0, 1, . . . , N∗ − 1,
and any real number t ∈ [kh∗ + lh, kh∗ + lh + h), when θt has no jump on the time interval [(k − 1)h∗, kh∗), we
have

K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

‖x(kh∗+lh)‖2ds ≤ 13
2

γ1

( 2
γ2

+ 1
)2

Kh∗2 +
9
2
Kh∗2 max

i∈S
tr(CT

i Ci),

where γ1 and γ2 are defined by (3.8) and (3.9), respectively.

4.2. Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into three parts.

Part 1: Closed-loop system and its increment property

Firstly we give the closed-loop system. Let

kt =
⌈

t

h∗

⌉
, lt =

⌈
t − kth

∗

h

⌉
, t′ = kth

∗ + lth, (4.2)

where �x� denotes the maximum integer less than x.
From the notations of (4.2), one can easily see that t ∈ [t′, t′ + h). And by the remarks under (2.4), we have

h∗ = N∗h for some positive integer N∗. Thus, lt ∈ {0, 1, . . . , N∗ − 1} is bounded.
Applying the SD-based adaptive control (2.4) to the system (1.1), we have the following closed-loop system:

dxt = A(θt)xtdt − B(θt)L(θ̂kth∗)xt′dt + C(θt)dWt

= [A(θt) − B(θt)L(θ̂kth∗)]xt′dt + A(θt)(xt − xt′)dt + C(θt)dWt (4.3)

= A1(θt)xtdt + B(θt)(L(θt) − L(θ̂kth∗))xtdt

+ B(θt)L(θ̂kth∗)(xt − xt′)dt + C(θt)dWt, t ∈ [t′, t′ + h), (4.4)

where A1(θt) = A(θt) − B(θt)L(θt). By (4.3),

xt − xt′ =
∫ t

t′
A(θs)(xs − xt′)ds +

∫ t

t′
[A(θs) − B(θs)L(θ̂kth∗)]dsxt′ +

∫ t

t′
C(θs)dWs.

Hence,

‖xt − xt′‖ ≤ 2c1h‖xt′‖ + c1

∫ t

t′
‖xs − xt′‖ds + ‖

∫ t

t′
C(θs)dWs‖, ∀t ∈ [t′, t′ + h],

where c1 is described by (3.6). Then, by Gronwall lemma [5] we get

‖xt − xt′‖ ≤ d1‖xt′‖ + d2(t), ∀t ∈ [t′, t′ + h], (4.5)

‖xt‖ ≤ (1 + d1)‖xt′‖ + d2(t), ‖xt′‖ ≤ 1
1 − d1

‖xt‖ +
d2(t)
1 − d1

, (4.6)

where

d1 = 2c1hec1h, (4.7)

d2(t) = c1ec1h

∫ t

t′

∣∣∣∣∣∣∣∣∫ s

t′
C(θμ)dWμ

∣∣∣∣∣∣∣∣ ds +
∣∣∣∣∣∣∣∣∫ t

t′
C(θs)dWs

∣∣∣∣∣∣∣∣ . (4.8)
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Let

γ4 = 2c4 + c4c
2
1e

2c1hh2, c4 = max
i∈S

tr(CT
i Ci). (4.9)

Then, by Schwarz inequality and Fubini theorem [17] we have

Ed2
2(t) ≤ 2hc2

1e
2c1h

∫ t

t′
E

∣∣∣∣∣∣∣∣∫ s

t′
C(θμ)dWμ

∣∣∣∣∣∣∣∣2 ds + 2E

∣∣∣∣∣∣∣∣∫ t

t′
C(θs)dWs

∣∣∣∣∣∣∣∣2
= 2hc2

1e
2c1h

∫ t

t′

∫ s

t′
tr(CT (θμ)C(θμ))dμ ds + 2

∫ t

t′
tr(CT (θs)C(θs))ds

≤ γ4h. (4.10)

Part 2: Stability of the closed-loop system

According to [12] and Assumption 3.1, the coupled Riccati equations

AT
1,iKi + KiA1,i +

∑
j

λi,jKj = −I (4.11)

have a unique symmetric positive definite solution set {Ki, i ∈ S}. Construct K(θt) such that when θt = i,
K(θt) = Ki. Similar to equation (2.29) of [25], by (4.4) and the SD-based adaptive control (2.4) we get

Ã(xT
t K(θt)xt)

�
= lim

Δ→0

1
Δ

(
E[xT

t+ΔK(θt+Δ)xt+Δ | θt] − xT
t K(θt)xt

)
= xT

t

⎛⎝AT
1 (θt)K(θt) + K(θt)A1(θt) +

∑
j

λθt,jKj

⎞⎠xt + tr(CT (θt)K(θt)C(θt))

+ 2xT
t (L(θt) − L(θ̂kth∗))T BT (θt)K(θt)xt + 2(xt − xt′)T LT (θ̂kth∗)BT (θt)K(θt)xt

= − ‖xt‖2 + tr(CT (θt)K(θt)C(θt)) + 2xT
t (L(θt) − L(θt′))T BT (θt)K(θt)xt

+ 2xT
t (L(θt′)−L(θ̂kth∗))T BT (θt)K(θt)xt+2(xt−xt′)T LT (θ̂kth∗)BT (θt)K(θt)xt, (4.12)

where Ã is an infinitesimal operator of associated process {θt, xt}.
We now analyze the last three terms on the right hand of the above equation (4.12).
For the last term on the right hand of (4.12), by (4.5)–(4.6) we have

2(xt − xt′)T LT (θ̂kth∗)BT (θt)K(θt)xt ≤ 2c2‖xt − xt′‖‖xt‖
≤ 2c2

(
d1

1−d1
‖xt‖+

d2(t)
1−d1

)
‖xt‖=2α‖xt‖2 + 2β(t)‖xt‖, (4.13)

where c2, d1, d2(t) are determined by (3.6), (4.7), (4.8), respectively, and

α =
c2d1

1 − d1
, β(t) =

c2d2(t)
1 − d1

·
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To study the third term on the right hand of (4.12), let

Φ(s) = (L(θs) − L(θs′))T BT (θs)K(θs).

Then, for any positive integer K, by (4.6), (4.10), Fubini theorem [17] and Lemma 4.1, we have

E

∫ Kh

0

xT
s Φ(s)xsds ≤ E

∫ Kh

0

‖Φ(s)‖ (2(1 + d1)2‖xs′‖2 + 2d2
2(s)

)
ds

≤
K−1∑
k=0

N∑
i=1

∫ (k+1)h

kh

E[‖Φ(s)‖2(1 + d1)2‖xkh‖2ds| | θkh = i]P (θkh = i)

+ 2
K−1∑
k=0

N∑
i=1

∫ (k+1)h

kh

E[‖Φ(s)‖d2
2(s)ds | θkh = i]P (θkh = i)

≤ 2c2(1 + d1)2λh

K−1∑
k=0

∫ (k+1)h

kh

E‖xkh‖2ds + 2λγ4c2Kh3

≤ 4(1 + d1)2

(1 − d1)2
c2λh

K−1∑
k=0

∫ (k+1)h

kh

(E‖xs‖2 + Ed2
2(s))ds + 2λγ4c2Kh3

≤ 4(1 + d1)2

(1 − d1)2
c2λhE

∫ Kh

0

‖xs‖2ds +
(

4(1 + d1)2

(1 − d1)2
+ 2

)
λγ4c2Kh3. (4.14)

Similarly, it can be shown that (4.14) still holds with Kh replaced by any given t > 0. Noticing that

(1 + d1)2

(1 − d1)2
≤ 5

4
, ∀ h ≤ 9 − 4

√
5

2c1ec1
,

by (4.14) we have the following estimates for the third term on the right hand of (4.12):

E

∫ t

0

xT
s (L(θs) − L(θs′))T BT (θs)K(θs)xsds ≤ 5λhc2E

∫ t

0

‖xs‖2ds + 7λγ4c2h
2t. (4.15)

To study the forth term on the right hand of (4.12), let

Ψ(t, k) = (L(θt′) − L(θ̂kh∗))T BT (θt)K(θt),
G(k−1)h∗ = {ω : ω ∈ Ω, θt(ω) jumps on interval [(k − 1)h∗, kh∗)},
G(k−1)h∗ = {ω : ω ∈ Ω, θt(ω) does not jump on interval [(k − 1)h∗, kh∗)}.
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When system (1.1)–(1.2) jumps on interval [(k − 1)h∗, kh∗), by Lemma 4.2 we have the following estimates for
the forth term on the right hand of (4.12):

E

∫ Kh∗

0

xT
s Ψ(s, ks)xsIG(ks−1)h∗ ds ≤

K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

‖Ψ(s, k)‖ (2(1 + d1)2‖xs′‖2 + 2d2
2(s)

)
IG(k−1)h∗ ds

≤
K−1∑
k=0

N∗−1∑
l=0

N∑
i=1

∫ kh∗+(l+1)h

kh∗+lh

E[‖Ψ(s, k)‖IG(k−1)h∗ | θ(k−1)h∗ = i]

× 2(1 + d1)2‖xs′‖2ds P (θ(k−1)h∗ = i)

+
K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

‖Ψ(s, k)‖IG(k−1)h∗ 2d2
2(s)ds

≤ 4(1 + d1)2

(1 − d1)2
c2(λh∗ + λ1h

∗2)
K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

(‖xs‖2 + d2
2(s))ds

+ 2γ4c2(λ + λ1h
∗)hKh∗2

≤ 5c2(λ + λ1h
∗)h∗E

∫ Kh∗

0

‖xs‖2ds + 7hγ4c2(λ + λ1h
∗)Kh∗2 (4.16)

and

E

∫ t

0

xT
s Ψ(s, ks)xsIG(ks−1)h∗ ds ≤ 5c2(λ + λ1h

∗)h∗E
∫ t

0

‖xs‖2ds + 7hγ4c2(λ + λ1h
∗)h∗t. (4.17)

When the system (1.1)–(1.2) has no jump on interval [(k − 1)h∗, kh∗), by Remark 4.3, (1 + d1)2 ≤ 5
4 , and

Lemma 4.4, we have the following estimates for the forth term on the right hand of (4.12):

E

∫ Kh∗

0

xT
s Ψ(s, ks)xsIG(ks−1)h∗ ds ≤

K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

‖Ψ(s, k)‖‖xs‖2I[‖xs‖2≤2(1+d1)2‖x(kh∗+lh)‖2+2d2
2(s)]

ds

≤ 2c2(1 + d1)2
K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

‖x(kh∗+lh)‖2ds

+ 2c2

K−1∑
k=0

N∗−1∑
l=0

E

∫ kh∗+(l+1)h

kh∗+lh

d2
2(s)ds

≤ 17c2γ1γ
2
3Kh∗2 + 12γ4c2Kh∗2 + 2γ4c2hKh∗ (4.18)

and

E

∫ t

0

xT
s Ψ(s, ks)xsIG(ks−1)h∗ ds ≤ 17c2γ1γ

2
3h∗t + 12γ4c2h

∗t + 2γ4c2ht, (4.19)

where γ1 and γ2 are given by (3.8) and (3.9), respectively, and

γ3 =
2
γ2

+ 1. (4.20)
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According to (4.12) and the Dynkin formula [16], by (4.13), (4.15), (4.17), (4.19) and the Jensen inequality [4],
we have

E(xT
t K(θt)xt) − E(xT

0 K(θ0)x0) ≤ −E

∫ t

0

‖xs‖2ds + E

∫ t

0

tr(CT (θs)K(θs)C(θs))ds

+ (20λ + 10λ1h
∗)c2h

∗E
∫ t

0

‖xs‖2ds

+ (28λ + 14λ1h
∗)c2h

∗γ4ht + 34γ1c2γ
2
3h∗t

+ 24c2γ4h
∗t + 4γ4c2ht + 2E

∫ t

0

α‖xs‖2ds + 2E

∫ t

0

β(s)‖xs‖ds

≤ − (1 − (20λ + 10λ1h
∗)c2h

∗ − 2α)E
∫ t

0

‖xs‖2ds

+ E

∫ t

0

tr(CT (θs)K(θs)C(θs))ds

+ (28λ + 14λ1h
∗)c2h

∗γ4ht + 34γ1c2γ
2
3h∗t + 24c2γ4h

∗t + 4γ4c2ht

+ 2
(

E

∫ t

0

β2(s)ds

) 1
2
(

E

∫ t

0

‖xs‖2ds

) 1
2

. (4.21)

Since ‖Wt − Wt′‖ are mutually independent, by (4.10), it is obvious that

lim sup
t→∞

1
t
E

∫ t

0

d2
2(s)ds = O(h), lim sup

t→∞
1
t
E

∫ t

0

β2(s)ds = O(h).

Therefore,

lim sup
t→∞

(
1
t
E(xT

t K(θt)xt) + (1 − (20λ + 10λ1h
∗)c2h

∗ − 2α)
1
t
E

∫ t

0

‖xs‖2ds

)

≤ lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)K(θs)C(θs))ds + 34γ1c2γ
2
3h∗

+ 24c2c4h
∗ + O(h) + O(h

1
2 )
(

lim sup
t→∞

1
t
E

∫ t

0

‖xs‖2ds

) 1
2

. (4.22)

Noticing

α =
2c1c2hec1h

1 − 2c1hec1h
≤ c2γ0

1 − γ0
,

by (3.2) we have

1 − (20λ + 10λ1h
∗)c2h

∗ − 2α ≥ 1 − (20λ + 10λ1h
∗)c2h

∗ − 2c2γ0

1 − γ0
> 0.
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This together with (4.22) gives

lim sup
t→∞

1
t
E

∫ t

0

‖xs‖2ds ≤ 2
γ5

lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)K(θs)C(θs))ds +
48
γ5

c2c4h
∗

+
68
γ5

γ1c2γ
2
3h∗ + O(h) < ∞, (4.23)

where γ5 = 1 − 32c2h
∗(2λ + λ1h

∗) − 2c2γ0
1−γ0

.

Thus, the closed-loop system is stable.

Part 3: On the LQ performance index
Denote

u∗
t = −L(θt)xt.

Then, similar to (4.13), (4.15), (4.17), (4.19) and (4.23) we have

lim sup
t→∞

1
t
E

∫ t

0

(us − u∗
s)

T R(θs)(us − u∗
s)ds = lim sup

t→∞
1
t
E

∫ t

0

[
xT

s (L(θs) − L(θ̂s∗))T R(θs)(L(θs) − L(θ̂s∗))xs

+ 2xT
s (L(θs) − L(θ̂s∗))T R(θs)L(θ̂s∗)(xs − xs′ )

+ (xs − xs′)T LT (θ̂s∗)R(θs)L(θ̂s∗)(xs − xs′)
]
ds

≤ (15c3λh + 5c3(λ + λ1h
∗)h∗) lim sup

t→∞
1
t
E

∫ t

0

‖xs‖2ds + 17γ1γ
2
3c3h

∗

2c5d1

1 − d1
lim sup

t→∞
1
t
E

∫ t

0

‖xs‖2ds + O(h
1
2 )
(

lim sup
t→∞

1
t
E

∫ t

0

‖xs‖2ds

) 1
2

+
2c6d

2
1

(1 − d1)2
lim sup

t→∞
1
t
E

∫ t

0

‖xs‖2ds + O(h∗) + O(h)

≤ 340
γ5

λγ1c2c3γ
2
3h∗2 + 17γ1γ

2
3c3h

∗ + O(h∗) + O(h
1
2 ), (4.24)

where c3 is defined by (3.7) and

c5 = max
i,j∈S

‖(Li − Lj)T RiLj‖, c6 = max
i,j∈S

‖LT
i RjLi‖.

Similar to equation (2.29) of [25], with regard to the system (1.1) and the SD-based adaptive control (2.4)
we have

Ã(xT
t M(θt)xt)

�
= lim

Δ→0

1
Δ

(
E[xT

t+ΔM(θt+Δ)xt+Δ | θt] − xT
t M(θt)xt

)
= xT

t (AT (θt)M(θt) + M(θt)A(θt) +
∑

j

λθt,jMj)xt + tr(CT (θt)M(θt)C(θt))

+ uT
t BT (θt)M(θt)xt + xT

t M(θt)B(θt)ut,
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where Ã is the infinitesimal operator of associated process {θt, xt}. Hence, by Dynkin formula [22] we have

E[xT
t M(θt)xt] = xT

0 M(θ0)x0 + E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds

+ E

∫ t

0

(uT
s BT (θs)M(θs)xs + xT

s M(θs)B(θs)us)ds

+ E

∫ t

0

xT
s

⎛⎝AT (θs)M(θs) + M(θs)A(θs) +
∑

j

λθs,jMj

⎞⎠ xsds.

Associating Riccati equation (2.2) with the above equation, we get

E

[
xT

t M(θt)xt +
∫ t

0

(xT
s Q(θs)xs + uT

s R(θs)us)ds

]
= xT

0 M(θ0)x0 + E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds

+ E

∫ t

0

(us − u∗
s)

T R(θs)(us − u∗
s)ds.

Thus, by (4.24) we have

lim sup
t→∞

E

(
1
t
xT

t M(θt)xt +
1
t

∫ t

0

(xT
s Q(θs)xs + uT

s R(θs)us)ds

)
= lim sup

t→∞
1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds

+ lim sup
t→∞

1
t
E

∫ t

0

(us−u∗
s)

T R(θs)(us−u∗
s)ds

≤ lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds

+
340
γ5

λγ1c2c3γ
2
3h∗2 + 17γ1c3γ

2
3h∗

+ O(h∗) + O(h
1
2 ),

which derives (3.4), by the definitions of γ3 and γ5 (see (4.20) and the line below (4.23), respectively). Thus,
Theorem 3.1 is true. �

Remark 4.4. By the proof and the conclusion of Theorem 3.1, the influence of system noise on the performance
index is crucial. As control step goes to zero, the difference between the performance index under the SD-based
LQ control and the optimal performance index under the complete-state-information-based LQ control does not
approach to zero, but to some constant

340λγ1c2c3( 2
γ2

+ 1)2h∗2

1 − 10c2h∗(2λ + λ1h∗) − 2c2γ0
1−γ0

+ 17γ1c2

(
2
γ2

+ 1
)2

h∗ + O(h∗),

which is determined by the system parameter set and estimation step h∗. It is worth noticing that the key error
term is 17γ1c2( 2

γ2
+1)2h∗, which has the order of h∗−1 as h∗ decreases to zero. So, in order to reduce the upper

bound (3.4), we propose to choose a relatively large estimation step h∗ within some admissible range, and a
sufficiently small control step h for control updating. (3.2) is only a sufficient condition. And so, for a concrete
system, the estimation step h∗ may be selected to be larger than that given by (3.2).
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5. Simulation example

In this section, we will give a simulation example to show the influence of estimation step h∗ and control
step h on the LQ performance index.

Consider one dimension MJS (1.1)–(1.3) with

N = 2; A1 = 0; A2 = −1; B1 = 1; B2 = 1; C1 = 1; C2 = 1; Λ =
[−1 1

0 0

]
. (5.1)

Let R1 = 10; R2 = 0.1; Q1 = 1; Q2 = 1 in LQ performance index (1.4).

Obviously, for i = 1, 2, [Ai, Q
1
2
i ] is observable. By [12], [A(θt), B(θt)] is stochastically stabilizable. The unique

symmetric positive definite solution set of coupled algebra Riccati equations (2.2) is

M1 = 1.1091, M2 = 0.232.

Feedback control matrices are
L1 = 0.11091, L2 = 2.32.

The solutions of algebra Riccati equations (4.11) are

K1 = 0.942, K2 = 0.151.

First, we consider one-step approach to design SD-based adaptive control. In this case, the estimation step is
equal to the control step, that is, h∗ = h. Two different values h = 0.005 and h = 0.0005 are taken, respectively.
The index difference between the performance index J under SD-based LQ control and the optimal performance

index lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds under the complete-state-information-based LQ control can be

expressed as

ΔJ = J − lim sup
t→∞

1
t
E

∫ t

0

tr(CT (θs)M(θs)C(θs))ds,

and depicted in Figures 1 and 2, respectively.
From Figures 1 and 2 it can be seen that when h∗ = h = 0.005, the index difference ΔJ is about 6 at the end

of our simulation; but when h∗ = h = 0.0005, ΔJ is finally about 7. This tells us that by one-step approach,
smaller sample step does not mean better performance index.

To get a clearer illustration about this observation, we run the simulation 25 times under h∗ = h = 0.005 and
h∗ = h = 0.0005, respectively. As the existence of random uncertainty caused by Brownian motion and Markov
jumping in system (1.1), from each simulation we get quite inequable index differences. To describe system
index difference in an average way, also a reasonable way, we list the index differences ΔJi as well as the mean
index differences ΔJ = 1

25

∑25
i=1 ΔJi in Tables 1 and 2. By simple calculation, in the first case (h∗ = h = 0.005),

the mean index difference ΔJ = 4.1744; when sample step reduces to h∗ = h = 0.0005, ΔJ = 4.3822. Obviously,
the performance index is neither asymptotically convergent to the optimal value nor decreasing smaller as h
reduces. Actually, the performance index under the SD-based adaptive LQ control seems worse as the sample
step becomes smaller in the case of the one-step approach.

Since the one-step approach cannot ensure good system performance, by Theorem 3.1 we employ the DS-
approach to design SD-based adaptive control for system (5.1) so as to optimize the LQ performance index.
For system (5.1), one can easily verify that distinguishable condition (3.1) holds for any given h∗ > 0. Noticing
that too large estimation step h∗ is not good for parameter estimation, and hence, not favorable to the system
performance, condition (3.3) given in Theorem 3.1 restricts the range of h∗. By straightforward calculation, all h∗

in [0.0012, 0.0018] satisfy condition (3.3). In this example, the range of h∗ is indeed wider than [0.0012, 0.0018],
which is consistent with the discussion of Remark 3.4. Actually, we can choose, for example, h∗ = 0.05 and
h∗ = 0.005, respectively, in the following double-stepped simulation.
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Figure 1. Curves of ΔJ , x, when h∗ = h = 0.005.

To illustrate how greatly the DS-approach improves the system performance and how much the estimation
step h∗ and control step h influence ΔJ , we run the simulation 25 times for each of the following three groups:
(1) h∗ = 0.05, h = 0.001; (2) h∗ = 0.005, h = 0.001; and (3) h∗ = 0.05, h = 0.01. The differences ΔJi and the
mean differences ΔJ are listed in Tables 3–5, respectively.

According to the simulation results listed in Tables 1, 3 and 4, we have the following comparison about the
one-step approach and DS-approach:

• By the one-step approach, when h∗ = h = 0.005, the mean difference ΔJ = 4.1744. However, by the
DS-approach, when estimation step is kept at h∗ = 0.005 and the control step is reduced to h = 0.001,
the mean difference becomes 3.3068, which is obviously better than that obtained by one-step approach.

• By the DS-approach with estimation step h∗ = 0.05 and control step h = 0.001, ΔJ equals 0.0993,
much better than that obtained by the one-step approach.

Based on the above analysis, DS-approach is obviously much better than the one-step approach in terms of
system performance.

Relying on those simulation results listed in Tables 3–5, we have the following observations about the impact
of the DS- and the one-step approach on the system performance:

• With respect to the fixed control step h = 0.001, when estimation steps are taken as h∗ = 0.05 and
h∗ = 0.005, respectively, the corresponding index differences ΔJ are 0.0993 and 3.3068, respectively.
This indicates that for a given control step, too small estimation step may worsen the performance
index.

• With respect to the fixed estimation step h∗ = 0.05, when control steps are taken as h = 0.001 and
h = 0.01, respectively, the corresponding differences ΔJ are 0.0993 and 2.4464, respectively. This
indicates that for a given estimation step, smaller control step may enhance the system performance.
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Figure 2. Curves of ΔJ , x, when h∗ = h = 0.0005.

Table 1. Values of ΔJi and ΔJ , when h∗ = h = 0.005.

9.2479 7.3104 7.5697 0.0881 5.6875
9.7960 –0.1188 0.0155 8.8376 8.1260

ΔJ 7.9942 8.4289 4.7325 –0.1184 –0.0943
8.8710 –0.0834 –0.0780 5.0272 4.5475
5.2946 –0.0355 –0.1266 7.6809 0.0374

ΔJ = 4.1744

• From the third group h∗ = 0.05, h = 0.01, we see that when estimation step and control step are
reduced (by the same percentage 90%) to h∗ = 0.005, h = 0.001, respectively, the index difference ΔJ
increases from 2.4464 to 3.3068, and becomes worse. This together with the above two observations
indicates that reduction of estimation step may be the key factor that worsens the system performance.

In summary, the key factor influencing system performance is estimation step rather than control step. So,
when designing SD-based adaptive control by DS-approach, in order to get a good performance index, a smart
way is to choose a suitable estimation step h∗ and a sufficiently small control step h.

6. Conclusion

In this paper we study the SD-based adaptive LQ control problem of a class of MJS with unknown Markov
jumps and stochastic noises, and analyze the influence of sample step on both the stability and the performance
index of the closed-loop system. In order to reduce the co-influence of Markov jumps and stochastic noises
on parameter estimates, system states and performance index, we introduce a DS-approach to design adaptive
control. This DS-approach is characterized by two different sample steps. One is much larger than the other.
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Table 2. Values of ΔJi and ΔJ , when h∗ = h = 0.0005.

8.0151 9.3887 7.0258 5.2822 –0.1919
0.3630 7.2570 9.3738 5.1325 5.4405

ΔJ 6.0733 0.1194 –0.0929 7.2268 10.3951
0.0400 6.3659 7.9925 –0.1279 0.0466
–0.0251 6.4008 0.5221 –0.0815 7.6143

ΔJ = 4.3822

Table 3. Values of ΔJi and ΔJ , when h∗ = 0.05 and h = 0.001.

–4.2595 2.3691 1.3762 –0.2489 –1.4393
–1.8598 1.9844 0.1006 –0.3818 –0.7565

ΔJ –0.3711 0.8186 0.2877 –0.4120 –0.2960
–0.7688 3.7420 –1.9723 –0.1786 0.0542
0.6156 0.9287 –0.1997 3.5687 –0.2186

ΔJ = 0.0993

Table 4. Values of ΔJi and ΔJ , when h∗ = 0.005 and h = 0.001.

7.3655 5.8146 –0.0360 –0.1370 5.2980
8.3120 4.0067 7.5286 3.2389 12.5092

ΔJ –0.1294 –0.0169 –0.5097 4.2209 –0.2194
9.1987 5.7351 –0.1010 7.0010 –0.1715
0.0153 –0.0480 4.1415 –0.1313 –0.2147

ΔJ = 3.3068

Table 5. Values of ΔJi and ΔJ , when h∗ = 0.05 and h = 0.01.

–0.2313 7.4997 –3.9841 –0.2458 6.2383
5.7968 8.3235 –0.0484 0.0060 0.5342

ΔJ –0.1112 3.3286 5.1799 2.7506 3.7324
–1.7149 –0.0931 –0.2892 2.8978 –0.1414
2.9570 10.0084 –0.1719 7.4188 1.5205

ΔJ = 2.4464

The larger one is used to estimate the unknown Markov jumps so as to reduce the influence of the stochastic noise
on the estimation accuracy and that of the system noise and estimation errors on the performance index. The
smaller one is used to design the SD-based control, since the smaller the control step is, the more information
on the system states can be obtained, and so, better controller can be obtained. With the assumptions that
MJS is stochastically stabilizable and each subsystem is observable, we prove that the closed-loop system is
stable under the double-stepped SD-based adaptive LQ control. It is found that in some circumstances, too
small estimation step may worsen the system performance, although for the control step, the smaller the better.

Appendix A: Proofs of Lemmas 4.2–4.4

Proof of Lemma 4.2. Since almost all sample paths {θt} are constant except for a finite number of simple jumps
in any finite time interval [25], assume that the jump points in [s0 − h, s0] are m, and denote them by s1, s2,
. . ., sm in sequence:

s0 − h < s1 < s2 < . . . < sm < sm+1 = s0.
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Then, from

E

[
‖g(θs′) − g(θ̂s0)‖

∫ s

s′
f(θμ)dμIGs0−h

| θs0−h = i0

]
≤ (s − s′) max

i,j∈S
‖g(i) − g(j)‖max

k∈S
f(k)EIGs0−h

and ∑
j �=i0

Pi0j(h) ≤ h
∑
j �=i0

(
eΛh − I

h

)
i0j

≤ h
∑
j �=i0

∥∥∥∥eΛh − I

h

∥∥∥∥ ≤ λh,

Pi0i0(h) −
m∏

i=0

Pi0i0(si+1 − si) ≤ Pi0i0(h) − (1 + λi0i0h) = h2

(
eΛh − I − Λh

h2

)
i0i0

≤ λ1h
2,

one can get Lemma 4.2. �
Proof of Lemma 4.3. Let

Fij = eAih −
∫ h

0

eAi(h−τ)dτBiLj .

Then, spirited by the Taylor expressions:

ex =
∞∑

s=0

xs

s!
, log(1 + x) =

∞∑
n=1

(−1)n+1xn

n
(|x| < 1), ln

1
1 − x

=
∞∑

n=1

xn

n
(|x| < 1),

from condition (3.3) we have

Fij − I =
∞∑

s=0

As
i h

s+1

(s + 1)!
(Ai − BiLj), (A.1)

‖Fij − I‖ ≤ h‖Ai − BiLj‖‖
∞∑

s=0

As
i h

s

(s + 1)!
‖ ≤ d1 < 1, (A.2)

log Fij =
∞∑

n=1

(−1)n+1(Fij − I)n

n
, (A.3)

‖ log Fij‖ ≤
∞∑

n=1

‖Fij − I‖n

n
≤ ln

1
1 − d1

, (A.4)

‖FN∗
ij ‖ = ‖eN∗ log Fij‖ ≤ eN∗ ln 1

1−d1 = (1 − d1)N∗
< 1, (A.5)

∞∑
s=1

‖Ai‖shs

s!
≤ ec1h − 1, (A.6)

where d1 is given by (4.7).
By (A.1) and (A.3) we have

log(FN∗
ij ) = N∗

[
(Ai − BiLj)h +

∞∑
s=1

As
i h

s+1

(s + 1)!
(Ai − BiLj) +

∞∑
n=2

(−1)n+1(Fij − I)n

n

]
= (Ai − BiLj)h∗ + Δij , (A.7)

where

Δij = h∗
∞∑

s=1

As
ih

s

(s + 1)!
(Ai − BiLj) + N∗

∞∑
n=2

(−1)n+1(Fij − I)n

n
·
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By (A.2), (A.4) and (A.6) we have

‖Δij‖ =

∣∣∣∣∣
∣∣∣∣∣h∗

∞∑
s=1

As
ih

s

(s + 1)!
(Ai − BiLj) + N∗(Fij − I)2

∞∑
n=0

(−1)n+1(Fij − I)n

n + 2

∣∣∣∣∣
∣∣∣∣∣

≤ h∗‖Ai − BiLj‖
∞∑

s=1

‖Ai‖shs

s!
+ N∗d2

1

(
1
2

+
∞∑

n=1

‖Fij − I‖n

n

)

< 2c1h
∗(ec1h − 1) + 4c2

1h
∗he2c1h

(
1
2

+ ln
1

1 − d1

)
· (A.8)

For any given matrices A and B, similar to Example x.4.2 in [2], one can get

eA+B = eA +
∫ 1

0

e(1−t)ABet(A+B)dt.

This together with (A.7) leads to

e(Ak−BkLj)h
∗

+ e(Ai−BiLj)h
∗ − 2FN∗

ij = e(Ak−BkLj)h
∗

+ e(Ai−BiLj)h
∗ − 2(e(Ai−BiLj)h

∗

+
∫ 1

0

e(1−t)(Ai−BiLj)h
∗
ΔijF

tN∗
ij dt)

= e(Ak−BkLj)h
∗ − e(Ai−BiLj)h

∗ − 2
∫ 1

0

e(1−t)(Ai−BiLj)h
∗
ΔijF

tN∗
ij dt

= Dkji(h∗)
(

I − 2D−1
kji(h

∗)
∫ 1

0

e(1−t)(Ai−BiLj)h
∗
ΔijF

tN∗
ij dt

)
. (A.9)

Hence, from (3.3), (A.5) and (A.8) we arrive at

‖2D−1
kji(h

∗)
∫ 1

0

e(1−t)(Ai−BiLj)h
∗
ΔijF

tN∗
ij dt‖ ≤ 2‖D−1

kji(h
∗)‖‖Δij‖

∫ 1

0

‖e(1−t)(Ai−BiLj)h
∗‖‖Fij‖tN∗

dt

< 2‖D−1
kji(h

∗)‖4c2
1h

∗2e2c1h∗
[
(ec1h − 1)

+ 2c1he2c1h

(
1
2

+ ln
1

1 − d1

)]
< 1 (A.10)

which implies that the matrix I − 2D−1
kji(h

∗)
∫ 1

0 e(1−t)(Ai−BiLj)h
∗
ΔijF

tN∗
ij dt is nonsingular. Hence, by the non-

singularity of Dkji(h∗) and (A.9), the matrix e(Ak−BkLj)h
∗

+ e(Ai−BiLj)h
∗ − 2FN∗

ij is nonsingular. This renders
γ2 > 0. �

Proof of Lemma 4.4. For any given integers k = 0, 1, . . . , l = 0, 1, . . . , N∗ − 1, and real number t ∈ [kh∗ +
lh, kh∗ + lh + h), substituting the SD-based adaptive control (2.4) into the system (1.1), one can get the
following closed-loop system

dxt = A(θt)xtdt − B(θt)L(θ̂kh∗)xt′dt + C(θt)dWt (A.11)

= A(θt)(xt − xkh∗)dt + A(θt)xkh∗dt − B(θt)L(θ̂kh∗)xt′dt + C(θt)dWt. (A.12)
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Let

θ(k−1)h∗ = i, θ̂(k−1)h∗ = j, θ̂kh∗ = k,

G(k−1)h∗ = {ω : ω ∈ Ω, θt(ω) has no jump on interval [(k − 1)h∗, kh∗)},

and notice that the sample path of x is continuous with probability one. Then, by (A.11) we obtain

xkh∗ = FN∗
ij x(k−1)h∗ + W̃kh∗ a.s., (A.13)

where

Fij = eAih −
∫ h

0

eAi(h−τ)dτBiLj ,

W̃kh∗ =
N∗−1∑
r=0

F r
ijW̃kh∗−(r+1)h,

W̃kh∗−(r+1)h =
∫ kh∗−rh

kh∗−(r+1)h

eAi(kh∗−rh−s)CidWs.

Since stochastic variables {W̃kh∗−(r+1)h, r = 0, . . . , N∗−1} and Markov process {θt} are mutually independent,
by (A.5) we have

E‖W̃kh∗‖2 ≤
N∗−1∑
r=0

E‖F r
ij‖2E‖W̃kh∗−(r+1)h‖2 ≤ N∗E

∫ h

0

tr(CT
i eAT

i seAisCi)ds. (A.14)

From the LMEE (2.3) it follows that

‖FN∗
ij x(k−1)h∗ − e(Ak−BkLj)h

∗
x(k−1)h∗ + W̃kh∗‖ ≤ ‖FN∗

ij x(k−1)h∗ − e(Ai−BiLj)h
∗
x(k−1)h∗ + W̃kh∗‖.

Squaring both sides of the above inequality and removing the same terms from the both sides gives

‖
(
e(Ak−BkLj)h

∗
+ e(Ai−BiLj)h

∗ − 2FN∗
ij

)
x(k−1)h∗‖ ≤ 2‖W̃kh∗‖.

This together with Lemma 4.3 implies

‖x(k−1)h∗‖ ≤ 2
γ2

‖W̃kh∗‖.

Thus, by (A.5) and (A.13) we have

‖xkh∗‖ = ‖FN∗
ij x(k−1)h∗ + W̃kh∗‖ ≤ ‖FN∗

ij ‖‖x(k−1)h∗‖ + ‖W̃kh∗‖ ≤ γ3‖W̃kh∗‖. (A.15)

Integrating both sides of (A.12) on interval [kh∗, kh∗ + lh) leads to

x(kh∗+lh) − xkh∗ =
∫ kh∗+lh

kh∗
A(θt)(xt − xkh∗)dt +

∫ kh∗+lh

kh∗
A(θt)dtxkh∗ +

∫ kh∗+lh

kh∗
C(θt)dWt

−
l−1∑
i=0

∫ kh∗+(i+1)h

kh∗+ih

B(θt)dtL(θ̂kh∗)x(kh∗+ih),
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which implies

‖x(kh∗+lh) − xkh∗‖ ≤ c1

∫ kh∗+lh

kh∗
‖xt − xkh∗‖dt + c1h

∗‖xkh∗‖ + c1h

l−1∑
i=0

‖xkh∗+ih‖

+

∣∣∣∣∣
∣∣∣∣∣
∫ kh∗+lh

kh∗
C(θt)dWt

∣∣∣∣∣
∣∣∣∣∣ .

This together with the Gronwall inequality renders

‖x(kh∗+lh) − xkh∗‖ ≤ ec1h∗
[
c1h

∗‖xkh∗‖ + c1h

l−1∑
i=0

‖x(kh∗+ih)‖
]

+

∣∣∣∣∣
∣∣∣∣∣
∫ kh∗+lh

kh∗
C(θt)dWt

∣∣∣∣∣
∣∣∣∣∣

+ c1ec1h∗
∫ kh∗+lh

kh∗

∣∣∣∣∣∣∣∣∫ s

kh∗
C(θμ)dWμ

∣∣∣∣∣∣∣∣ ds,

or equivalently,

‖x(kh∗+lh)‖ ≤ (1 + c1h
∗ec1h∗

)‖xkh∗‖ + c1hec1h∗
l−1∑
i=0

‖x(kh∗+ih)‖ +

∣∣∣∣∣
∣∣∣∣∣
∫ kh∗+lh

kh∗
C(θt)dWt

∣∣∣∣∣
∣∣∣∣∣

+ c1ec1h∗
∫ kh∗+lh

kh∗

∣∣∣∣∣∣∣∣∫ s

kh∗
C(θμ)dWμ

∣∣∣∣∣∣∣∣ds. (A.16)

By (A.16), (A.15) and Lemma 4.3 we arrive at

‖x(kh∗+lh)‖ ≤ (1 + d3)(1 + ec1h∗
c1h)l−1‖xkh∗‖ +

l−1∑
i=1

⎡⎣ l−i∑
j=1

(ec1h∗
c1h)jd(kh∗ + ih)

⎤⎦
+ d(kh∗ + lh)

≤ (1 + d3)(1 + ec1h∗
c1h)l−1γ3‖W̃kh∗‖ +

l−1∑
i=1

⎡⎣ l−i∑
j=1

(ec1h∗
c1h)jd(kh∗ + ih)

⎤⎦
+ d(kh∗ + lh), (A.17)

and hence,

‖x(kh∗+lh)‖2 ≤ 2(1 + d3)2(1 + ec1h∗
c1h)2l−2γ2

3‖W̃kh∗‖2 + 4d2(kh∗ + lh)

+ 4

⎡⎣l−1∑
i=1

l−i∑
j=1

(ec1h∗
c1h)jd(kh∗ + ih)

⎤⎦2

, (A.18)

where

d3 = c1h
∗ec1h∗

+ c1hec1h∗
,

d(kh∗ + ih) = c1ec1h∗
∫ kh∗+ih

kh∗

∣∣∣∣∣∣∣∣∫ s

kh∗
C(θμ)dWμ

∣∣∣∣∣∣∣∣ ds +

∣∣∣∣∣
∣∣∣∣∣
∫ kh∗+ih

kh∗
C(θt)dWt

∣∣∣∣∣
∣∣∣∣∣ .
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Notice that condition (3.2) ensures c1hec1h∗
< 1. Then, by Schwarz inequality, the last term on the right hand

of (A.18) satisfies

4

⎡⎣ l−1∑
i=1

l−i∑
j=1

(ec1h∗
c1h)jd(kh∗ + ih)

⎤⎦2

≤ 4
l−1∑
i=1

⎡⎣ l−i∑
j=1

(ec1h∗
c1h)j

⎤⎦2
l−1∑
i=1

d2(kh∗ + ih)

≤ 4le2c1h∗
c2
1h

2

(1 − ec1h∗c1h)2

l−1∑
i=1

d2(kh∗ + ih). (A.19)

By Schwarz inequality and the Fubini theorem [17], we have

Ed2(kh∗ + ih) ≤ 2E

∣∣∣∣∣
∣∣∣∣∣
∫ kh∗+ih

kh∗
C(θs)dWs

∣∣∣∣∣
∣∣∣∣∣
2

+ 2h∗c2
1e

2c1h∗
∫ kh∗+ih

kh∗
E

∣∣∣∣∣∣∣∣∫ s

kh∗
C(θμ)dWμ

∣∣∣∣∣∣∣∣2 ds

= 2
∫ kh∗+ih

kh∗
tr(CT (θs)C(θs))ds + 2h∗c2

1e
2c1h∗

∫ kh∗+ih

kh∗

∫ s

kh∗
tr(CT (θμ)C(θμ))dμ ds

≤ 2c4ih + c4c
2
1e

2c1hh∗h2i2 (A.20)

integrating both sides of (A.18) on time interval [kh∗ + lh, kh∗ + (l + 1)h), taking expectation, summing over
all the KN∗ terms, by (A.14), (A.19) and (A.20) one can get

K−1∑
k=0

N∗−1∑
l=1

E

∫ kh∗+(l+1)h

kh∗+lh

‖x(kh∗+lh)‖2ds ≤ 2(1 + d3)2γ2
3

K−1∑
k=0

N∗−1∑
l=1

h(1 + ec1h∗
c1h)2l−2E‖W̃kh∗‖2

+ 4
K−1∑
k=0

N∗−1∑
l=1

hEd2(kh∗ + lh) +
4e2c1h∗

c2
1

(1 − ec1h∗c1h)2

K−1∑
k=0

N∗−1∑
l=1

l

l∑
i=1

h3Ed2(kh∗ + ih)

≤ 2(1 + d3)2γ2
3Kh∗2e2c1h∗ec1h∗ 1

h
E

∫ h

0

tr(CT
i eAT

i seAisCi)ds

+
[

4eec2h∗
c2
1h

∗2

(1 − ec1h∗c1h)2
+ 4

]
Kh∗2(c4 + c4c

2
1e

2c1hh∗), (A.21)

where the following inequalities have been used for the last inequality:

N∗−1∑
l=1

(1 + c1hec1h∗
)2l−2 =

(1 + c1hec1h∗
)2N∗−2 − 1

(1 + c1hec1h∗)2 − 1
<

e2c1h∗ec1h∗ − 1
2c1hec1h∗ <

h∗

h
e2c1h∗ec1h∗

,

N∗−1∑
l=1

hEd2(kh∗ + lh) ≤ c4h
∗2 + c4c

2
1e

2c1hh∗4,

N∗−1∑
l=1

l
l−1∑
i=1

h3Ed2(kh∗ + ih) ≤ h3
N∗−1∑
l=1

l
l−1∑
i=1

(2c4ih + c4c
2
1e

2c1h(ih)2)

≤ h3
N∗−1∑
l=1

(c4hl3 + c4c
2
1e

2c1hh2l4) ≤ c4h
∗4 + c4c

2
1e

2c1hh∗6.

Noticing condition (3.2) implies c1h
∗ec1h∗ ≤

√
2−1
2 , by (A.21) we have Lemma 4.4. �
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